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Modeling solute diffusion in aqueous polymer solutions
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Abstract

There are numerous models describing solute diffusion in polymer solutions. An analysis of these models demonstrates that none can
provide a consistent explanation of the phenomenon observed for solutes that can be modeled as essentially solid spheres. For this reason, a
new model based on a physical obstruction approach is presented. In this model, solute movement in the presence of polymer chains is
assumed to be governed by the probability of the solute molecule encountering a series of openings between the chains larger than its
hydrodynamic radius. The model is tested against data taken from the literature for a series of polymer solutions and solute probes and found
to provide good agreement to the effects of solute size, polymer concentration, and polymer flexibility. © 2002 Published by Elsevier

Science Ltd.
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1. Introduction

The study of the diffusion of small molecules, globular
proteins and colloidal particles in aqueous polymer solu-
tions is important in gaining an understanding of drug
diffusion in biological fluids and in the release of drugs
from drug formulations such as tablets. To study these
areas more effectively, it would be useful to have at hand
a mathematical expression capable of accurately predicting
solute diffusivities. Any such model will have to accurately
reflect the experimentally observed dependence of solute
diffusivity on solute size, polymer properties and polymer
concentration.

There have been numerous attempts at providing predic-
tions for solute diffusivity within polymer solutions and
gels. Mechanisms used as a basis include enhanced hydro-
dynamic drag on the solute molecule [1-3], energy barriers
to solute jumps [4], and physical obstruction due to the
presence of the polymer chains [5—7]. None of these models
is successful at explaining all the experimental observations.

In this paper, an obstruction-scaling model originally
developed for predicting solute diffusion in gels is demon-
strated to be applicable to describing solute diffusion in
semi-dilute polymer solutions. The discussion begins with
a description of the limitations of existing models when
compared to experimental data taken from the literature.
This discussion leads to the development of the obstruc-
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tion-scaling model. The model is compared to literature
data to demonstrate its applicability, and its underlying
assumptions and limitations are discussed.

1.1. Literature findings

Before discussing the existing models, it is useful to
examine characteristic experimental results. All of the
models to be discussed have in common the assumption
that the solute molecule is a solid sphere, and so only data
in which the solute can be considered essentially Brownian
will be examined. Data of solute diffusion in aqueous, non-
ionic polymer solutions were collected from the literature.
These literature sources, the polymers comprising the
solution, and the method used to determine diffusivity are
listed in Table 1. As none of the models considered account
for solute—polymer interactions, data in which these inter-
actions were likely were not used.

The physical properties of the polymers are listed in
Table 2 along with the reference from which the values
were obtained. The polymer chain radius, r, listed in
Table 2 was calculated from the following relationship [7],

1
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in which [/ is the length of the monomer unit, M, is the
molecular weight of the monomer, v is the specific volume
of the polymer, r,, is the radius of a water molecule and N, is
Avogadro’s number. The radius of one water molecule is
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Table 1

Polymer solutions examined and the data author (abbreviations: PVA =
poly(vinyl alcohol); HPC = hydroxypropyl cellulose; NIPAAM =
poly(N-isopropylacrylamide))

Polymer Method Reference
PVA Pulsed-gradient spin echo NMR [19]
Dextran Holographic interferometry [11]
HPC Fluorescent photobleaching recovery [14]
NIPAAM Pulsed-gradient spin echo NMR [16]

added to account for the hydration sheath surrounding the
polymer backbone chain.

The solutes used in these studies and their radii are listed
in Table 3. These radii were calculated using the Stokes—
Einstein expression,
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in which kg is Boltzmann’s constant, 7 is temperature, 7 is
solvent viscosity at 7, and f is 4 for solutes whose size
approach that of the solvent (i.e. water) and 6 for solutes
greater in size than water [8]. The radius of the water
molecule was chosen as 1.85 A which is an average of the
three most consistent values listed in Table 3.

The influence of polymer concentration on solute
diffusivity is shown in Fig. 1 while the influence of
solute hydrodynamic radius is given in Fig. 2. In
these figures, the diffusivity has been normalized with
respect to the diffusivity of the solute in an aqueous
medium alone under the same temperature condition.
Fig. 1 shows that there is an exponential decrease in
diffusivity as the polymer concentration increases, as has
been well established in the literature. Fig. 2, which shows
the influence of solute radius in a given polymer solution,
clearly demonstrates that a Gaussian, or D/D = exp(—Krf)
where K is a constant, dependence exists. A successful
model of the diffusion process must therefore capture both
of these effects.

Table 3

Solutes and their hydrodynamic radius (abbreviations: EG-Me = ethylene
glycol methyl ether; EG-Me, = ethylene glycol dimethyl ether; EG-
tBuMe = ethylene glycol fert-butyl methyl ether; 18-crown-6 = crown
ether; PEG = poly(ethylene glycol); BSA = bovine serum albumin; FD-
# = FITC-dextran and the number following indicates the molecular weight
of the dextran in kDa)

Solute Dy (X 10° cmz/s) T T (A) Reference

Water 1.72 25 2.13 [16]
1.95 23 1.78 [31]
222 30 1.88 [25]
2.30 30 1.82 [32]

EG-Me 7.88 25 3.07 [19]

EG-Me, 7.56 25 3.24

EG-tBuMe 5.58 25 4.38

18-crown-6 4.37 25 5.54

PEG 326 49 25 4.8 [33]

PEG 1118 2.8 25 8.9

PEG 2834 1.8 25 13.8

PEG 3978 1.5 25 15.8

PEG 400 33 23 7.0 [35]

PEG 600 1.86 23 12.5

PEG 1000 1.66 23 14.0

PEG 1500 1.13 23 20.6

PEG 2000 1.07 23 22.6

PEG 4000 0.96 23 24.3

BSA 0.60 20 36.3 [34]

v-Globulin 0.40 20 53.0

FD-9 0.154 30 18.1 [14]

FD-20 0.0996 30 27.8

FD-70 0.048 30 58.0

FD-150 0.0315 30 88.5

FD-2000 0.0155 30 179.0

1.2. Review of scaling theory

Another feature of many of the models being considered
is that they invoke polymer solution scaling relationships to
describe the average distance between interacting polymer
chains in solution, i.e. the mesh size, £. The average mesh
size is a function of the polymer physical properties, its
affinity for the solvent, and the concentration of polymer
in the solution. All of these factors are incorporated into

Table 2

Physical properties of polymers examined

Polymer M,, (g/mol) v (cm’/g)* [ (A)b a (A) e (10\)C X C
PVA 44 0.765 2.51 1.54 6.40 0.494 8.5
Dextran 162 0.625 5.14 5.14 6.92 0.473 9.0
NIPAAM 113 0.896 2.51 1.54 8.32 0.510“‘| 10.6°
HPC 336 0.8057 5.14 5.14 7.12 0.480" 52.3¢8

* From Ref. [26].
b
¢ Calculated using Eq. (1).

4 From Ref. [27].

¢ From Ref. [28].

" From Ref. [29].

¢ Calculated from persistence length given in Ref. [30].

Calculated from bond angles and bond lengths, except dextran for which the value for alginate was assumed (see Ref. [21]).
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Fig. 1. Effect of polymer volume fraction on solute diffusivity in aqueous
polymer solutions.

scaling theory. Therefore, in order to discuss the models
effectively, a brief review of semi-dilute solution scaling
relationships is necessary.

The solution behavior of a polymer is dictated to a large
extent by its concentration. Schaefer, using thermodynamic
arguments based on excluded volume effects, defines con-
centration crossover regimes wherein the semi-dilute poly-
mer solution behavior changes from good to marginal to
theta solvent conditions [9]. In the good solvent regime,
the assumptions of scaling theory are valid, and ¢ is given
by,

E~ap icTiA-207 3)

in which a is the effective bond length, ¢ is the polymer
volume fraction in solution, and C and y are the polymer
characteristic ratio and interaction parameter, respectively.
Eq. (3) holds until the marginal regime is reached. The
polymer volume fraction at which this occurs is,
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Fig. 2. Effect of solute radius on its diffusivity in aqueous polymer solu-
tions. Data taken from Masaro et al. for PEGs diffusing in PVA [16].

Table 4

Crossover polymer concentrations defining solvent regimes and applicable
scaling parameter value, v, based on concentration range of polymer solu-
tion in study

Polymer é ¢ v

PVA 0.001 0.012 1.0
Dextran 0.005 0.054 0.5
NIPAAM <0 <0 1.0
HPC 0.000 0.040 0.5

Within the marginal solvent regime, the mean distance
between polymer chains is given by,

C%a _1
T U-29 ¢ 4)

The volume fraction which defines the upper limit of
marginal solvent behavior is given by Eq. (6), above
which the polymer solution enters the theta regime.

ot =1-2y (6)

Within the theta regime, binary monomer—monomer
contacts are eventually dominated by ternary interactions.
Under these conditions, ¢ is expressed as,

E~aC?¢". (7)

It follows from Eqgs. (3)—(7) that, in applying models based
on scaling relationships, it is important to recognize in
which solvent regime the solution resides.

For the data gleaned from the literature, the polymer
volume fraction concentrations which define the crossover
points of solvent behavior were calculated using the physi-
cal properties listed in Table 2. The results are given in
Table 4. For NIPAAM, whose interaction parameter is
greater than 0.5, all concentrations in solution are consid-
ered to produce a theta solvent regime. It should be noted
that the number of polymer systems considered for analysis
were limited due to the existence, or non-existence, of
values of the polymer physical properties necessary to
determine concentration regimes.

3

2. Limitations of existing models

Hydrodynamic descriptions of solute transport within
polymer solutions are based on the Stokes—Einstein equa-
tion for solute diffusivity. The solute is considered to move
at a constant velocity in a continuum composed of the
solvent, and this movement is resisted by frictional drag.
Within the polymer solution, the polymer chains are consid-
ered to be centers of hydrodynamic resistance, fixed in place
relative to the moving solute by entanglements and physical
crosslinks. The polymer chains enhance the drag on the
solute by slowing down the fluid near the polymer chain.
A number of models have been derived based on this
premise [1,2,10], which have been demonstrated to be
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effectively similar [11]. Therefore, the model of Cukier [2]
will be used as representative of this approach. Cukier
described the decrease in diffusivity as,

DBO = exp(—kcr¢”) (®)
in which kc is an undefined constant for a given polymer—
solvent system. The value of v is determined by solvent—
polymer interactions using the scaling descriptions provided
before. While this model predicts the polymer concentration
influence, its major limitation is that it does not account for
the observed dependence of diffusivity on the solute radius.

Another model based on enhanced frictional drag is
the hydrodynamic scaling model of Phillies [12]. This
model is based on the ideas that the polymer chains in
solution are not fixed but mobile, and that the dominant
polymer—solute forces are hydrodynamic in nature. Once
again, solute—polymer interactions are neglected. For
small (<<100,000 Da), solid solute probes, the model is
expressed as,

gzamﬂm%W@ ©)
0

wherein A is a constant for a given polymer—solvent pair,
and M, is the polymer molecular weight. Again, the model
has been demonstrated to provide a reasonable functional
dependence on polymer solution concentration. However,
as with the other hydrodynamic models, this equation
does not capture the true dependence of diffusivity on solute
size. Moreover, the model predicts that the molecular
weight of the polymer in solution should influence solute
diffusion, regardless of solute size. For large solutes
(>250 A) polymer molecular weight has indeed been
found to influence solute diffusivity [13—15]. However, in
studies of small (<200 A) solutes, similar to those examined
in this work, it has been demonstrated that polymer
molecular weight has no significant impact on solute diffu-
sivity [11,14-16].

Models based on an obstruction approach assume that the
presence of impenetrable polymer chains causes an increase
in the path length for diffusive transport. The polymer
chains allow passage of a solute molecule only if it can
pass between the polymer chains. This approach was
taken by Ogston et al. [6] who assumed that solute diffusion
in the polymer solution occurs by a succession of randomly
directed unit steps. The polymer solution is assumed to exist
as a random network of straight, long fibers of negligible
width, and the solute is considered to be a hard sphere. The
unit step is taken to be the root mean square average
diameter of spherical spaces residing between the fiber
networks. From these assumptions, they expressed the
ratio of the diffusion coefficient in the polymer solution to
that in water as,

D [ (r s +r f)

D, re

Jﬂ (10)

The limitations of this model are the fixed dependence of D
on polymer volume fraction, which neglects different poly-
mer—solvent conditions, and the incorrect description of the
effect of solute radius.

Johansson et al. [7] developed an obstruction model based
on the idea that the polymer solution can be viewed as being
composed of a number of cylindrical cells. Each cylindrical
cell consists of an infinite polymer rod centered in a cylinder
of solvent of a given radius. The average diffusivity of the
solute within this cell was found by solving Fick’s first law.
The global diffusivity of the solute is then calculated by
summing up the number of cells having a given radius
multiplied by the average diffusivity within that cell. The
distribution of the cell radii was calculated using an expres-
sion for the distribution of spherical spaces within a random
network of straight fibers [17]. Their expression for the
reduction in solute diffusivity is,

D

D, = e+ o’ e“E,(2a) (11)
where
+ 2
a=o“1) (12)
Iy

and E, is the exponential integral. The model produced a
satisfactory agreement to simulation and experimental
results for solute diffusion in both polymer solutions and
polymer gels. Furthermore, the correct dependence on
solute size is predicted. However, the model under predicts
solute diffusivities for large solutes in high polymer volume
fraction solutions (>0.01) [7].

Recently, another physical model of solute diffusion in
polymer solutions has been put forth by Petit et al. [4]. In
this approach, solute diffusion is envisioned to occur via
jumps of length &~ B¢ " within the solution. In this
respect, it is similar to the Eyring jump theory of solute
diffusion in liquids [18]. These jumps occur with a
frequency k, and B is predicted to be a constant for a
given polymer in solution. The polymer contribution to
solute transport retardation is considered to arise due to
friction and this friction is given by k&% Their expression
for solute diffusivity within a polymer solution is,

D Dy 5,\"!
FO—(1+@ ) (13)

According to this approach, the value of v is determined
by scaling theory. It has been found through curve fitting
Eq. (13) to experimental data that k37 varies with solute
radius, decreasing as solute radius increases [19]. Since
is a constant, k, or the jump length, must be varying. This
analysis is reasonable, as larger molecules could experience
fewer jumps. However, the lack of a description of how k
varies with solute size limits the applicability of the model.
Furthermore, the fitted values of v do not correspond to the
scaling predictions. For example, the values obtained for
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solute diffusion in poly(vinyl alcohol) ranged from 0.55 to
0.65 for a PVA concentration range of 0.027-0.38 g/ml
[19]. At these concentrations, PVA is well within the
marginal solvent regime and therefore v should be approxi-
mately equal to 1.0. Finally, activated jump theories are
controversial in the diffusion in liquids area [18].

3. Obstruction-scaling model

Recently, a model based on physical obstruction of the
solute molecule by polymer chains has been proposed to
predict intra-gel solute diffusion [20,21]. In this inter-
pretation, solute transport occurs if an opening between
the polymer chains large enough to permit its passage is
produced through the random thermal movement of the
polymer chains. Thus, solute diffusivity is dependent on
the probability of an opening of this size occurring. This
probability is expressed as,

D=0y | st (14)

in which g(r) is the distribution of opening radii between
polymer chains, and r* is the critical radius required to allow
solute passage. By picturing the polymer solution as a
random network of negligibly thin, straight polymer fibers,
the distribution of radii, r, of the spherical spaces between
the polymer chains can be expressed as [17],

r T (r\?
g(r) = WGXP(_Z(E) ) (15)

where R is the mean radius of this distribution.

The average opening between polymer chains is consid-
ered to be £/2 where ¢ is given by the scaling relationships
described before. Using these equations, the obstruction-
scaling model has the following general expression,

D rg + 1y )2

— = —m| ——— 16
DO exp[ Tr( g + 2r £ ( )
in which ry is the radius of the solute probe, r; is the polymer
chain radius, and £ is the mean distance between polymer—

polymer contacts. Thus, within the marginal solvent regime,
the obstruction-scaling model is written,

D B rg + rg :

— =exp| —m| ——— a7
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where,

kK~ C3a(l =27 (18)

and within the theta regime,

D rg +r¢ 2
—— — R R S 1
D, exp[ 1T< P 2rf) ] (19)

where,
Kk ~ aC?. (20)

Egs. (18) and (20) define the scaling constant for the
polymer—solvent pair.

The obstruction-scaling model equations were fit to the
gathered literature data using a Levenberg—Marquardt non-
linear regression algorithm incorporated into a computer
graphing software package (KaleidaGraph™). The applic-
ability of the model was determined by analysis of the sum
of squares of the residuals (SSR), the correlation coefficient
(R?), and the physical consistency of the returned value of
the fitted parameter. The confidence interval (%) of the
returned value, at the 95% confidence limit, was calculated
using the sum of squares of the residuals as an estimate of
the variance in the data.

4. Applicability of the obstruction-scaling approach

Application of the obstruction-scaling model to the litera-
ture data illustrating the influence of polymer concentration
on solute transport is displayed in Fig. 3a—c. The model was
fit to the data by lumping all the polymer terms and the
scaling constant into one term, k, which was considered
adjustable. v was fixed at the scaling theory value for the
specific polymer—solvent conditions (see Table 4). Various
values were chosen as initial guesses for the regression
procedure to verify the uniqueness of the obtained regres-
sion parameters. By visual inspection, it is clear that the
model provides a good agreement with the data. This obser-
vation is confirmed by an examination of the regression
results listed in Table 5. The sum of squares of the residuals
is very low and the correlation coefficients are all above
0.90.

Attention should be drawn to the polymer—solvent scaling
constant values. If the model is physically consistent, then
the returned values of the scaling constant, k, should be
statistically equivalent for all solutes diffusing in a given
polymer solution, assuming that no solute—polymer inter-
actions occur. For cases where this assertion can be tested, k
values are indeed statistically equivalent, within the 95%
confidence interval. For example, x for the various solutes
diffusing in PVA is consistently around 1.05 A. The con-
stant of proportionality implicit in Eqs. (18) and (20), can be
calculated using the regression results given in Table 5. The
results are 0.0065, 0.0040, and 0.0094 for NIPAAM,
dextran, and PVA, respectively. It appears that the propor-
tionality constant is polymer-dependent, at least as can be
ascertained with this small data set.

The ability of the obstruction-scaling approach to account
for solute size is shown in Fig. 4. The regression results
are listed in Table 6. The model is consistent with the
experimental data. Furthermore, the fitted x value for
PEGs diffusing in PVA solution is statistically equivalent
to the value obtained for the smaller solutes in PV A solution
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Fig. 3. Application of obstruction-scaling model to literature showing the
effect of polymer volume fraction on solute diffusivity. Regression results
are shown as lines and the regression results are given in Table 5.
(a) Various solutes diffusing in PVA—water [19]; (b) self-diffusion of
water in PVA and NIPAAM [16]; (c) BSA and <y-globulin in dextran—
water solutions.

(Table 5). The model has thus been shown to be able to
predict the influence of both solute radius and polymer
volume fraction for the same water—polymer system.

The obstruction-scaling approach thus seems to be
successful in describing solute diffusion in polymer solu-
tions. Not only does the model account for the observed
polymer volume fraction and solute radius behavior, but
also describes the influence of polymer chain flexibility on
solute diffusivity. For example, Fig. 3b shows the self-
diffusion behavior of water in PVA and NIPAAM. The
data shows that the less flexible NIPAAM (C = 10.6)

Table 5
Results of applying obstruction-scaling model to literature data of effect of
polymer volume fraction

Polymer Solute v k (A) + SSR R?
PVA EG-Me 1 1.04 003 0005 0985
EG-Me, 1 106 005 0010 0.966
EG-BuMe 1 113 006 0011 0942
18-crown-6 1 105 006 0012 0938
Water 1 0.88 005 0.008 0978
NIPAAM  Water 1 1.13 004 0004 0986
Dextran BSA 05 1338 040 0009  0.962

v-Globulin 0.5 15.6 0.80 0.003 0.859

provided the least resistance to water diffusion while the
PVA (C = 9) provided the most. This behavior is captured
in the scaling feature of the model which predicts that & will
increase as C increases at a given polymer volume fraction
(Eq. (5)).

The assumptions of the model require discussion at this
point. The model relies on the depiction of a polymer solu-
tion, first proposed by Ogston [17], as a random network of
straight fibers. Clearly, the polymers examined here cannot
be considered rod-like, however, the assumption of random-
ness in the depiction allows the model to approach the dis-
tribution expected of more flexible chains and so this
assumption can be considered reasonable. The model also
assumes that the scaling theory proposed by Schaefer is
correct. This theory is well supported by experimental
evidence [22,23] and so the use of the theory seems valid.
Further, the model tacitly assumes that the diffusion of
solutes in water in the absence of polymer can be described
by the Stokes—FEinstein theory. No diffusion in liquids
theory has been demonstrated to be completely predictive,
however the Stokes—Einstein theory has been demonstrated
to be reasonably effective [8]. Moreover, it has been demon-
strated by Bu and Russo [14] and by Nyden et al. [24], that
models based on the assumption that the solute is essentially
a hard, hydrodynamically equivalent sphere cannot account
for the greater than predicted diffusivities of high molecular
weight flexible coil polymers in solutions of other polymers.
Polymer coils exhibit non-draining behavior when their size
is smaller than the correlation length of the matrix and they
can therefore be treated as hydrodynamic spheres. Once the
molecular weight increases beyond this restriction, models
based on hard sphere solutes predict a greater restriction to
diffusion than is observed experimentally because the poly-
mer coil can modify its shape to pass through the available
opening.

Table 6
Results of applying the obstruction-scaling model to literature data illus-
trating the influence of solute hydrodynamic radius

2

Polymer Solute K * SSR R*

PVA PEGs 1.17 0.04 0.007 0.871
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Fig. 4. Application of obstruction-scaling model to data illustrating effect of
solute radius. The lines represent fits to the data and the regression results
are given in Table 6.

To illustrate this point, the data of Bu and Russo [14], for
FITC-dextrans of molecular weights ranging from 9 to
2000 kDa, is examined in more detail. The results of apply-
ing Eq. (17) to the data are listed in Table 7. From Table 7,
one can see that, as r, increases beyond 28 15%, K increases,
while for the two solutes below this limit, k is constant at
8.4 A. This result means that, in order for the model to fit the
data appropriately, the average opening between polymer
chains must increase as r, increases beyond 28 A. Clearly,
this cannot be true. By considering the true value of k to be
8.4 A theoretical curves were drawn to the data in Fig. 5.
The figure demonstrates that the larger polymer solutes
cannot be considered to be non-draining inflexible and
spherical solutes. The higher than predicted D for these
solutes must arise from another mechanism, possibly
reptation.

Finally, the data set of experimental results has been
taken from those polymers whose physical properties are
well characterized. This data set is rather limited, which
hampers the ability to discern the applicability of the
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Fig. 5. Illustration of influence of polymer solute chain flexibility enhancing
diffusivity above that predicted using a solid solute assumption. As polymer
solute size increases, the predicted diffusivity is much lower than that
observed experimentally.

Table 7
Regression results of fit of Eq. (17) to data of Bu and Russo of dextrans
diffusing in HPC

FITC-dextran molecular i (A) K (A) * R SSR
weight (kDa)

9 18.1 8.41 032 0976  0.003

20 27.8 8.38 0.21 0.991 0.002
70 58 11.97 0.54 0978  0.009
150 88.5 16.89 044 0994  0.003
2000 179.0 21.88 033 0999  0.001

model. A need exists for more experimental studies to deter-
mine diffusivities in other well defined polymer systems.
More data could help either prove or disprove this model
(and other models). Data are particularly needed in the area
of the effect of solute probe radius on diffusivity.

5. Conclusions

An obstruction-scaling model has been presented and
shown to successfully account for the influence of polymer
volume fraction and solute size on a solute’s diffusivity in
aqueous polymer solutions for a variety of polymer systems.
The model does not account for solute—polymer inter-
actions, which have been found to be significant in certain
cases [19,25]. Furthermore, the model is limited to predict-
ing diffusivities of solutes which are essentially hard spheres
in semi-dilute solution.
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